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The formal treatment of the Rayleigh-Schr6dinger perturbation theory based 
on a first-order iteration procedure as described in a previous publication is 
discussed with reference to the properties of the terms of a Taylor series. 
The formalism is generalized to allow for multiple perturbation. 
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1. Introduction 

For the eigenvalues and eigenvectors of a perturbed Hamiltonian in Rayleigh- 
Schr6dinger (RS) perturbation theory, formal solutions can be derived by different 
procedures such as the direct solving of the set of perturbation equations [1-3], 
operator techniques [4%], or analytical methods [7, 8]. Based on a first-order 
iteration procedure, a new concise and useful operator treatment of the RS 
perturbation theory was developed in collaboration with E. Ruch [9-]. Although 
there are similarities in form, this treatment and the Lie-algebraic treatments of the 
perturbation theory [10, 11] are quite different perturbation schemes. The first- 
order perturbation iteration method called FOPIM [12, 3] for the derivation of 
explicit solutions of the RS perturbation equations also differs from our method 
since in that procedure, in contrast to ours, for each iteration a specific operation 
is performed. 

For non-degenerate states, our formal treatment of the RS perturbation theory is 
based on the fact that the first-order eigenvector expressed in terms of unperturbed 
eigenvectors and of the perturbation operator can be used as a "zeroth-order" 
term for the calculation of an improved "first-order" correction which is equal 
to the second-order eigenvector. This process can be iterated. Thus, the n'th-order 
term f<") of the power series expansion Z ,  37f ~) for a RS eigenvalue or eigen- 
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vector is expressible in the compact form f(")=(1/n !)/:f(o), where/~ is a con- 
veniently defined operator. The procedure permits the determination of the explicit 
expressions for the energies and eigenvectors in non-degenerate RS perturbation 
theory in a systematic and easily understandable way. 

The method can be used correspondingly to determine, for instance, the RS 
expressions for projectors onto degenerate subspaces. There exists an analogous 
treatment of the Dirac perturbation theory for state vectors, for the evolution 
operator, the statistical operator, or for quantum mechanically conserved 
quantities [13]. 

The formalism was proved to be well adapted to certain physical questions in that 
it provides insights into structural features of perturbation expressions which, in 
general, might not be provided by the usual formulation such as the connection 
between the n'th-order and (n+ 1)'th-order terms. This was demonstrated by a 
simple proof of a linked cluster theorem [9, 14] and the quantum mechanical 
adiabatic theorem [13]. In these applications, extensive formal calculations could 
be replaced by a direct conclusion. Another advantage of the iteration method 
over the usual methods is that a detailed approximation calculus can be systemati- 
cally carried through. For instance, the quantum mechanical expression for the 
electric polarizability can be calculated from the expression for the electric dipole 
moment, the expression for the hyperpolarizability from that for the polarizability 
etc. [9]. 

In the present paper, we discuss the iteration method 1-91 with reference to the 
properties of the terms of a Taylor series. The restriction on the spectrum of 
the unperturbed Hamiltonian to have no continuous part as was assumed in the 
earlier work can be dropped so long as the unperturbed energy eigenvalue 
considered belongs to the discrete spectrum; furthermore, the perturbed Hamil- 
tonian may be a general analytic function of the perturbation parameter rather 
than a linear function. The formalism can easily be generalized to allow for 
multiple perturbation. We shall develop the formal solutions for the energies and 
corresponding eigenvectors in non-degenerate RS double perturbation theory by 
introducing two suitable operators corresponding to the two perturbations. In 
the Appendix, the relations which define the operator/~ are summarized as well 
as some of the properties of this operator. 

2. Formal Treatment of RS Single Perturbation Theory 

The RS perturbation theory is concerned with the determination of the isolated 
eigenvalues E s and eigenvectors Is) of a Hamiltonian ~ = ~ .  2"H <") which, for 
2-+0, tend to known isolated solutions Es ~~ and Is~ respectively, of the un- 
perturbed Hamiltonian ~<0); the ~ " )  are Hermitian operators and 2 is a real 
parameter. It is assumed that the structure of the operators ~<") permits the 
energies Es and the vectors Is) to be expressed also as power series in 2, so that 
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The RS procedure, as usually presented, consists in substituting these series into 
the equation x/g Is) = E~ I s), in solving recursively the set of perturbation equations 
obtained, and in expressing the n'th-order solutions E, (") and Is') in terms of the 
operators ~o<j), j = 0 ,  I . . .  n, and of unperturbed quantities [3]. 

2.1. First-Order Iteration Procedure 

Writing now the power series (1) in the form 

f ( 2 )  = ~ 2"f,(2) .~= o = ~, 2"f(') with 

we arrive at 

~ f'(2)l~=o =(n + l)f~'+ ~) 

1 ~"f03 f"(2)=n! ~2"' f"(~ 

(2a) 

This formula forms the basis for our discussion of the RS perturbation theory. 
According to (2a), the first derivative of a product 1-I~ g}") of ng'th-order per- 
turbation terms g}"'~ is obtained by substituting for all i the sum g["') + 2(n~ + 1)g}'~ + ~) 
for g} "'), collecting the terms of the first order in 2, and dropping 2; for example, 
we have 

f~,)=.,~,~),~,2)~ai ~2 (n l+nz=n)  

~ ( n +  1)f~"+l)= (nl + 1)O~ "~+l]'~('~)+rn~2 \ 2 "Jff l'~"(nl)"(nz+l),/~]l ~Z " (2b) 

Thus, the transformation f romf  (') toil" + 1] corresponds to usingf (") as a "zeroth- 
order" term and to calculating the "first-order" perturbation correction to it. 
Thereby, the first-order perturbation correction to a sum is the sum of the 
corresponding corrections of the summands and the first-order correction to a 
product is the sum of those products, each of which coincides with the given 
product except for one factor which is replaced by its first-order correction. 

L e t f  (1~ be equal to the RS expression for a solution Is1); the factors g}'~) then 
are unperturbed vectors Is~ (s~ the operators Jt ~(~) and (j~f~o)E~O))-i etc.; 
the corrections g}"'+ ~) are again expressible in such terms and the operator W(z). 
Thus, the repeated treatment of ]s 1) according to the simple procedure (2b) 
permits the construction of the explicit expressions for particular n'th-order 
solutions Is"). Given an expression for Is1), the perturbation energies E~ ") can be 
computed correspondingly from EJ~ (s~176176176 

The procedure is applicable only if the perturbation corrections to the number 1 
and to the unity operator are defined to vanish and if, on the other hand, all zero 
terms are included which are determined by the perturbation equations and have 
non-vanishing corrections. Such terms appear in the degenerate case; for example, 
the difference E ( ~  (~ is equal to zero for E(~176 ~'(~ s , but E ( ' ) - E  (") need Sp s ~  Sp S~  S o 8~  

not vanish. Therefore, the method provides no advantages for the determination 
of the eigenvalues and eigenvectors in degenerate RS perturbation theory. 
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If, however, E} ~ is a non-degenerate eigenvalue, the first-order expression 
Is1> = ~}~176 is determined by just the first-order Schr6dinger perturbation 
equation; no zero terms whose corrections could contribute are provided by the 
perturbation equations. For constructing the perturbation vectors Is" > in arbitrarily 
high order by our procedure, it is thus sufficient to know this explicit expression for 
Is * >, the operators a4, ~ and the first-order correction to the reduced resolvent 

1 
~o)= (I -Is~ (s~ ~7}o) _ a<,~(o)(I -[s~ (s~ (3a) 

.@~1) is evaluated again according to (2b). Using the equation 1 = [A- 1](~176 
which gives [A - 1] (1) = _ [A - 13 (~ (1)[A - i] (o), one finds 

(1) (o) (o) (o) (1) o o o (1) (0) (o) -sO(1)- ~176 ' - - ~  ,.~ )~, - ~  ~, ~ Is >(s ]-Is~ IJ%, ~ ~, .~, . (3b) 

If the spectrum of w(o) has no continuous part as was assumed in [9], the operator 
0 0 Z,(,~) ]t >(t ]could have been used instead of 1 -]s~176 I. 

For example, the explicit expression for the second-order eigenvector Is 2> is 
determined from 

Is1> = o.~~176 (1)]8~ > 

as follows 

Ise> = �89 + + > }. 

This vector satisfies the condition of normalization of Is) to unity in second order 
and fulfils the equation Im<s ~ I s2>=0. The example gives rise to consider the 
normalization and the specific structure of the eigenvector computed by means 
of our first-order iteration method. 

1) The perturbed eigenvector [ s ) = s  2"Is") is normalized to unity if Is ~ is 
normalized to unity and if the n'th-order term Is" >, n >~ 2, is constructed by means 
of the repeated transformation of Is'> according to (2b). This follows from the 
fact that the normalization condition for the n'th order, differentiated according 
to Eq. (2b), is transformed into that for the (n + 1)'th order: 

O,n O ,n+ l  

Z , ( n + l )  y, 
k k 

The procedure, therefore, does not permit the use of the intermediate normalization 
condition sometimes adopted which means that Is") for all n>~ 1 is taken to be 
orthogonal to ]s~ In case two unperturbed vectors are orthogonal, the corre- 
sponding perturbed vectors are also orthogonal. 

2) The expression for the n'th-order vector Is" >, n/> 2, including its phase terms, is 
determined uniquely by the iteration method starting from Is 1> =~~176 
Since Is1> is chosen to have the property 

Im( s~ "l sl> = 0, (4a) 
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the higher-order terms Im(s~ ") are also fixed by the procedure. We find, from 
(2a) and (2b), 

I m ( s  ~ I $ 2 ) = 0 ,  Im(s  ~ Is 3) = - � 89  1 I sa), 

Im(s~ [ s 4) = - � 89  1 I s 3 ) , . . .  (4b) 

The vectors thus obtained have the form 

Fsl>=l l>, 

I s3) = I ~3) -- ~ Im(sl  I sZ)Is~ , (4c) 

Is4>-- l~4>-~Im<sl I s2>[~l>-~Im(sl I s3>ls~ . . . .  
The vectors [gn) are the conventional n'th-order solutions for the RS eigen- 
vector [~)= ~ ,  2 ~ ]g") satisfying the conditions of normalization to unity for the 
various orders as well as the equations Im(s~ I S")= 0. As can be seen from the 
Eqs. (4c), our procedure, in general, does not take IS") into (n + 1)lg "+ 1). 

The specific structure of the vectors ]s ~) in Eq. (4c) results from the following 
fact. In contrast to the solution for the energy, the solution for a corresponding 
eigenvector is not uniquely determined by the perturbation equations since an 
eigenvector is only defined up to a multiplicative constant. Thus, besides the 
solutions Ig ~), the linear combinations 

( ) ;."Is">=;." ~")+ a(k~l~"-k), n = l , 2  . . . .  N (5a) 

with arbitrary coefficients a ~k) also satisfy the perturbation equations up to and 
including the N ' th  order; we have specified [s ~ = Ig~ If we then require the 
perturbation solutions Is) and Ig) for the eigenvector to be normalized to unity, 
the terms a ~") turn out to have fixed real parts, but arbitrary imaginary parts 
expressing the fact that the perturbation equations allow a n'th-order eigenvector 
to have an imaginary multiple of the unperturbed eigenvector added to it. The 
multiplicative constant is reduced to a phase factor, 

1,0o 1,oo 
1+ ~ 2"a(")=exp(ic0, ~=  ~ 2"~ (") (5b) 

n 

with real 7(")'s; the various normalized solutions differ from one another as do Ig) 
and Is)= Ig) exp (it0. Let the solutions tg") satisfy Ira(s~ 1 g" )=0  for all n, then, 
because of Eq. (5a), the imaginary part of a (") has the form 

Ima~l )=Im(s  ~ Is1), 
1, .  i ( 5c )  

I m a ( ~ = I m ( s ~  - ~ ( I m a ( k ) ) ( s ~  n>~2. 
k 

Given the eigenvector Is) through the (n - 1)'th order as well as the term Im (s o I s" ), 
according to Eq. (4a) and Ob), respectively, we can calculate Ima (") and, from 
Eq. (5b), the terms e(") and Rea ("). Thus, Eq. (5a) is reduced to Eq. (4c). 
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Since the solutions Is) and Ig) of (4c) differ only in a phase factor, we have 

0 , n  0 , n  

2  skl. �9 �9 Is"-k  = Y. �9 
k k 

The perturbation energies E} "), therefore, are computable by the new scheme from 
with the aid of the vectors I~ k), as expected. 

Thus, the explicit RS perturbation expressions can be constructed systematically 
by the first-order iteration procedure, according to (2b). For the derivation of in- 
creasingly higher-order expressions, the extent of the corresponding calculations 
increases rapidly and the method soon becomes unpractical. Its essential advantage, 
however, is that it reflects the connection of the RS perturbation series terms in n'th 
order and (n + 1)'th order. A formalization of the procedure is achieved by the use 
of a suitably defined operator�9 

2.2. The Operator 

In [97, the operator ~ was introduced to formulate the first-order iteration 
procedure in a simple and compact form. p, is defined to transform is ~ into 
~o)~(1)[sO), jt~(,) into (n + 1)~r (" + 1) and to act on a function of such quantities 
as a differential operator; its formal properties are summarized in the Appendix. 
As is shown there, the total Hamiltonian can be put in the form 

Jr = exp (2fi)-Yt ~(~ exp ( -  2~). (6a) 

In the non-degenerate case, the RS expressions for the n'th-order terms is") and 
E} ") can be constructed by the repeated application of r to the unperturbed terms 

! 1 
is") =~i/~"ls~ E (")= ~"Es(~ ; (6b) 

�9 s n !  

it follows that 

Is) =exp  (2/0Is~ Es = exp (2fl,)E~ ~ (6c) 

If E} ~ is an eigenvalue of jr(o) with finite degeneracy, it was observed [9] that the 
operator ~, can be used to construct the RS projector ~ s =  Z ,  2"~} ") whose 
zeroth order N~o) is the projector onto the subspace of Jt ~~ corresponding to 
E} ~ We have 

, (2~)~s-~(o) exp ( -  2fi). (6d) 

The formalism can be extended to similar quantum mechanical expressions 
which are invariant in each order under rotations of  the basis in degenerate sub- 
spaces. For example, the perturbation corrections to tr (~}o)r co)) can be calculated 
by means of /~ if the commutators [fi, F(~ of fi with the operator ~r are 
known. 
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3. Formal Treatment of RS Double Perturbation Theory 

The formalism presented for the RS single perturbation theory can easily be 
extended to the case of the double perturbation theory where 

.~=~-~(0)_.~_ ~ /~t~,~m)_~_ 2 A~ ~(2n) (7a) 
m n 

with )-1, 22 being different perturbation parameters and the Yt~} p) being Hermitian 
operators. We shall discuss the double perturbation corrections to a non- 
degenerate eigenvalue E~ ~176 and the corresponding eigenvector Is ~176 of Jt~(~ the 
perturbed eigenvalue E~ and the perturbed eigenvector Is} are assumed to be 
expansible in double power series in the parameters 21 and 22 : 

E~= 2 2'~2"2E(s ""), Is}= ~, 2~'2~]sm"}. (7b) 
m,?/ m,n 

If E} ~176 is degenerate, such an expansion is, in general, not valid. By inserting the 
series expansions (7a, b) into the Schr6dinger equation, one gets a system of 
perturbation equations which is usually solved as in the case of the single per- 
turbation [3]. 

We now introduce two left operators ~1, ~2. In addition to their definitions which 
are equivalent to those of the operator ~ in the case of a single perturbation (see 
Appendix), we need a definition of their sum and product as well as of the 
application of ~ to ~ " )  with i#j; obviously, we define 

A I s~176 - o) (oo) ~(1)1 r % --  --s - v i  [- /7 

[fii,Jt~ ") ]=0 if ir 

(~i + f i i ) f  = ~if+/~f,  

I 
~oo~_ E~ ~176176 ; 

~i ~ i f  = ~i ( ~ j f ) .  

(8) 

Thus, the operators ~1 and ~'2 can  repeatedly be applied to ~(0), is0O} and E~ (~176 
Using Eq. (6a) and the relation 

[fi,, [fij, ~ ( o ) 3 ] = 0  if i#j, 
we can put the Hamiltonian in the form 

34 ~ = exp (21/~1) exp (,~2fi2)~.~ (0) exp (-22J~2) exp ( -  21/~1) 

= exp (22~2) exp (21~1)~  (~ exp ( - )q /~ l )  exp (-22fl2)  (9) 

= exp (21~ a + 22/~2)Jf (~ exp ( -  21~ 1 - 22~2). 

To construct formal solutions for Is"") by the repeated application of the operators 
~'1, ~2 to  IS00), we choose the first-order solutions as 

islo> i,o > = 21 oo>. 
We consider the (1, 1)'th-order solutions 

1 1 >,21,= 2 11sOO>; 
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they differ in phase terms: using the equations Im {s ~176 fi~s ~176 = 0, i= 1, 2, we have 
for instance, 

fillm(s~176 l s~176 l s~ + Im(s~176 [ s1~)(12)=O 

and get 

E~l, ~z]ls~176163176176 c~ la)=2 ]m<s~ [ 1~ 

The terms fi~'p~ Is~176 therefore, are not invariant under distinguishable permu- 
tations of the fi/s. The expression for a (m, n)'th-order eigenvector Is"") is a sum 
of products of factors each of which, besides of Is~176 remains unchanged if 
Eft1,/e2] is applied. Thus, using the equation 

[fi l ,  f i z ] f  ~ g = ([fll ,  f i2]f)  o g+fo [ill, fi2]g, 
we find 

J i l l ,  f12] [ Smn ) = i ~  11)lsmn>" (10a) 

Equations of this type are not to be confused with equations such as 8Zls)/s2~822 = 
021s)/0,~20).1 for 21=22=0.  

The terms Is"") satisfy the set of  perturbation equations obtained from i f  I s )=  
Esls); thus, only those sequences of operators of the type fi]"~ applied to [s ~176 
can generate the vectors Is m") which, when applied to ~(~176176176176176176 
formally yield these perturbation equations. The following sequences of operators 
fulfil this condition: 

1 1 1 
m!n!fi'~p2, mln,fi"2p"~, (m+n)l~fiT/P2, m,n=O, 1,2,...  �9 , . p 

In the first product, all t h e / ~  operators stand to the left of the ~'2 operators; 
this order is changed in the second product; in the third term, the summation is 
to be extended over all distinguishable permutations of the fil and fi2 operators. 
In this way, different sequences of vectors Is"") are defined, 

1 
I Srnn >(12)--m !n [ fiT/P2 Is~176 

1 fi~fi],]sOO) ' (10b)  ]sm")(21)-m !n! 

1 

leading to perturbed eigenvectors Is) which differ in their phase factors only: 

[S)(12e = exp (R,~l) exp (/~2~2)Is~176 

Is)(21) = exp (22fi2) exp (21ill)Is~176 (10c) 

Is)s = exp (21fi , + 22P2)]s~176 
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where 

IS)(I 2 ) =  exp (i~/)1s)(21)= exp (icr 

These vectors are normalized to unity if Is ~176 is normalized to unity. The order of 
sequence of the factors in the operator exp (2~/~i) exp (2j~.i), i r j, indicates that 
the perturbation Y~, TM (n) zjX4~j in all orders is to be considered before Y~, 27~[ "). 

As the phases in fillS ~176 and ~21s ~176 are fixed, the different phase factors exp (ie~) 
and exp (ie~ x) are uniquely determined. Using the Campbell-Hausdorff formula 

exp(A)exp(B)=  e x p ( A + B + � 8 9  B ] , B ]  ~ A - ~ [ [  ,BJ, A3+---), 

we have 

IS)(12 ) e x p  (21,~2[~ 1 , / /2  ] 1 2~ . . .  = +~;~IJ~EA~,  [~,/~3] + )ls>~21~ 
exp (12i,'~2[-~,1, ~ 2 ]  1 2 

and • could explicitly be calculated. from (10a), the power series for ~ ~ 

Since the perturbation energies Es ("") are uniquely determined by the perturbation 
equations and do not depend on phases, the term p'~"2E} ~176 is equal to ~ /~ 'E}  ~176 
for each pair of indices (m, n) and, therefore, independent of the order of sequence 
in which the operators fl~,/~2 are taken into account; hence 

Thus, the explicit expressions for the (m, n)'th-order energies E} "") can be con- 
structed as follows: 

II~,/~ ~ ( m - l ' n ) f o r  rn~>l 
E(smn) = 1 9,~ ,mAn p(O0)__ ~ i 7 U'I~L~S 

m ! n ! - ~ ,  ~ l z , , 2 ~ s  - -  ( l lb)  

L; I (re, n -  1) ~2E~ t for n~>l, 

where . ~ ] ' ~  denotes any permutation of the operators ~a, ~2. We can write 
the perturbed eigenvalue E~ in the form 

E~ = exp (21/~1) e x p  (}.2/e2)E} 00)= exp (22fi2) exp (21fit)E} ~176 

= exp (.~.1/~,1 + 22fie)E} ~176 (llc) 

The Eq. (l lb) presents a well-known interchange theorem. For m,n>~l,  the 
application of ~ to (lira)E} m- ~,~) can be replaced by the application of ~:  to 
(1/n)E~"' "- ~) 

Thus, in RS double perturbation theory, we have obtained formal solutions for 
an energy eigenvector and the corresponding eigenvalue whose zeroth order is 
non-degenerate. The double perturbation formulas for other quantum mechanical 
expressions such as projectors can be derived as in analogous cases of the single 
perturbation theory. The procedure can easily be extended to the case of more 
than two perturbations. 
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4. Conclusion 

The formal RS perturbation theory for non-degenerate energy states presented 
for the case of a single perturbation has been generalized to allow for multiple 
perturbation. By the use of suitable operators which are defined to generate the 
first-order perturbation corrections with respect to the different perturbations, 
formal solutions of the RS perturbation equations for the terms of the power 
series expansions of energy eigenvalues and eigenvectors are obtained in a compact 
form. The explicit perturbation expressions are constructible systematically by 
the repeated application of the operators to the corresponding unperturbed 
terms. Thereby, the uniqueness of the RS energies implies their independence of the 
order of sequence in which the operators are applied to the zeroth-order eigen- 
value; the eigenvector, however, depends on this sequence and the various 
solutions differ in phase terms. 

The perturbation expressions formulated in this way provide insights into some 
of their interesting features as was illustrated by examples in [9] and [14] which 
indicate where this treatment of perturbation theory has advantages over the 
usual formulation. The formalism should be applied to further practical examples 
such as the calculation of multipole moments of compound systems. It seems to 
be useful to extend the investigations to diagrammatic methods of perturbation 
theory. 

Acknowledgement. The financial support by the Deutsche Forschungsgemeinschaft is gratefully 
acknowledged. 

Appendix 

We summarize the definition and some of the properties of the operator f [93. 

Let the Hamiltonian fly be given as a power series ~ .  2"fir (") and E} ~ be an 
isolated eigenvalue of J4f (~ The left operator fi is then defined as follows: 

a) #(s~176 ~ ~176176 E}O~_~(o~' 
b) (riffle"))= (n+ 1)Jfr 

c) A(/+g)= f/+Ag; 

d) f i fo  g-=(f i f )  o g+ f o fig; 

e) A.f= fm(f.-~f), f0f=f; 
f) fi"f=O, n>~ 1, if fremains uncorrected, e.g. (fi"l)=0. 

Withfo  g we denote any product of f and g; the notation ( f i f )  . . .  indicates that 
f is applied to f only and not to factors on the right side of the brackets; for the 
sake of consistency, the number 1 and the unity operator belong to the co- 
efficient domain of fi as well as zero terms which are not determined by the 
perturbation procedure. 
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If the application of fi to the operator d is defined, its application to the inverse 
operator d -  * is obtained from 

O= ~ d -  * d = ( f i W -  ~)W + w -  l fi~4. 

In this way, the application of  fi to ~o) and, consequently, to the RS expressions 
for E} ") an) Is" ) is defined in arbitrarily high order. 

Introducing the sum 

O,n ~k  

as in the discussion of properties of derivations [15] and, assuming fi formally to 
be nilpotent to the (n+ 1)'th power, i.e. fi ,+l =0,  we find 

,@")fog=(,J~"f)o~(~")g if / ;"+~=0 

and for n --~ oo 

exp (,~fi)fo g = (exp (2fl)f) o exp (2fi)g. 
Because fi"l =0,  n~> 1, we have the result that the operator ,ix n) transforms un- 
perturbed orthonormal eigenvectors with isolated eigenvalues into vectors which 
are orthonormal up to and including the n'th order. 

The application of fi to an operator (9 is described by the commutator [fi, (9] 
as can be seen by the definitions c) and d). The definition e) now reads 

(fi"(50=[fi, O]. with [fl, (9]o=-C, [fl, (5,]~=[fl,[fi,(~],_,] 

and the definitions b) can be put in the form 

[/~, W(~ !~("). 

For the Hamiltonian we thus get the representation 

2" 
~ =  ~ . ~  [fi, ~F(~ = exp ( 2 f i ) ~  (~ exp ( -2 f i ) .  

If E~ ~ is a degenerate eigenvalue, the operator fi, in contrast to the non- 
degenerate case, does not take a "correct" zeroth-order eigenvector ]s ~ into the 
corresponding first-order expression as follows from the definition a). As discussed 
in [9], the operator fi, however, takes the projector ~}o) onto the subspace of  
~(o)  corresponding to E} ~ into the first-order term ~ * )  of  the perturbation series 
for . ~ =  ~ ,  2"~}"); furthermore, fi transforms ~}") into (n+ 1)~s ("+1) provided 
that the n'th-order term is written in the explicitly invariant form. This condition 
takes into account the difference between fi]s ~ and [sJ) and means that a term of 
the type 

0 (1) 0 0 0 ( i )  0 0 ZIs.>E L <s.[= Is.><s.I 
P P 

has to be replaced by 

Z Iso ~ o (,) o 
p,~r 
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o (1)  o As ( sp l~  Is~) =0  for aCp, both expressions differ in additive zero terms only, 
the perturbation corrections of which, in general, do not vanish. 
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